GRADIENT - traducción al árabe
DICLIB.COM
Herramientas lingüísticas IA
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:     

Traducción y análisis de palabras por inteligencia artificial

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

GRADIENT - traducción al árabe

MULTI-VARIABLE GENERALIZATION OF THE DERIVATIVE
Gradient vector; Gradients; Gradient (calculus); Gradient of a scalar; Gradient Operator; Grad operator
  • ''f''(''x'',''y'') {{=}} −(cos<sup>2</sup>''x'' + cos<sup>2</sup>''y'')<sup>2</sup>}} depicted as a projected [[vector field]] on the bottom plane.
  • The gradient, represented by the blue arrows, denotes the direction of greatest change of a scalar function. The values of the function are represented in greyscale and increase in value from white (low) to dark (high).
  • 1=''f''(''x'', ''y'') = ''xe''<sup>−(''x''<sup>2</sup> + ''y''<sup>2</sup>)</sup>}} is plotted as arrows over the pseudocolor plot of the function.

GRADIENT         

ألاسم

مَزْلَق ; مُنْحَدَر

gradient         
‎ مَدْروج‎
gradient         
اسْم : درجة التحدّر . منحدَر

Definición

gradient
['gre?d??nt]
¦ noun
1. a sloping part of a road or railway.
the degree of such a slope, expressed as change of height divided by distance travelled.
Mathematics the degree of steepness of a graph.
2. Physics a change in the magnitude of a property (e.g. temperature) observed in passing from one point or moment to another.
Origin
C19: from grade, on the pattern of salient.

Wikipedia

Gradient

In vector calculus, the gradient of a scalar-valued differentiable function f {\displaystyle f} of several variables is the vector field (or vector-valued function) f {\displaystyle \nabla f} whose value at a point p {\displaystyle p} is the "direction and rate of fastest increase". If the gradient of a function is non-zero at a point p {\displaystyle p} , the direction of the gradient is the direction in which the function increases most quickly from p {\displaystyle p} , and the magnitude of the gradient is the rate of increase in that direction, the greatest absolute directional derivative. Further, a point where the gradient is the zero vector is known as a stationary point. The gradient thus plays a fundamental role in optimization theory, where it is used to maximize a function by gradient ascent. In coordinate-free terms, the gradient of a function f ( r ) {\displaystyle f(\mathbf {r} )} may be defined by:

d f = f d r {\displaystyle df=\nabla f\cdot d{\bf {r}}}

where d f {\displaystyle df} is the total infinitesimal change in f {\displaystyle f} for an infinitesimal displacement d r {\displaystyle d{\bf {r}}} , and is seen to be maximal when d r {\displaystyle d{\bf {r}}} is in the direction of the gradient f {\displaystyle \nabla f} . The nabla symbol {\displaystyle \nabla } , written as an upside-down triangle and pronounced "del", denotes the vector differential operator.

When a coordinate system is used in which the basis vectors are not functions of position, the gradient is given by the vector whose components are the partial derivatives of f {\displaystyle f} at p {\displaystyle p} . That is, for f : R n R {\displaystyle f\colon \mathbb {R} ^{n}\to \mathbb {R} } , its gradient f : R n R n {\displaystyle \nabla f\colon \mathbb {R} ^{n}\to \mathbb {R} ^{n}} is defined at the point p = ( x 1 , , x n ) {\displaystyle p=(x_{1},\ldots ,x_{n})} in n-dimensional space as the vector

f ( p ) = [ f x 1 ( p ) f x n ( p ) ] . {\displaystyle \nabla f(p)={\begin{bmatrix}{\frac {\partial f}{\partial x_{1}}}(p)\\\vdots \\{\frac {\partial f}{\partial x_{n}}}(p)\end{bmatrix}}.}

The gradient is dual to the total derivative d f {\displaystyle df} : the value of the gradient at a point is a tangent vector – a vector at each point; while the value of the derivative at a point is a cotangent vector – a linear functional on vectors. They are related in that the dot product of the gradient of f {\displaystyle f} at a point p {\displaystyle p} with another tangent vector v {\displaystyle \mathbf {v} } equals the directional derivative of f {\displaystyle f} at p {\displaystyle p} of the function along v {\displaystyle \mathbf {v} } ; that is, f ( p ) v = f v ( p ) = d f p ( v ) {\textstyle \nabla f(p)\cdot \mathbf {v} ={\frac {\partial f}{\partial \mathbf {v} }}(p)=df_{p}(\mathbf {v} )} . The gradient admits multiple generalizations to more general functions on manifolds; see § Generalizations.

Ejemplos de uso de GRADIENT
1. The tarmac soon ends and the gradient gets much steeper.
2. "If we‘re right, it suggests there is a gradient of faster–rate evolution to slower–rate evolution across the kind of energy gradient we see from the equator the poles," he said.
3. It has an average gradient of '.8 percent with some sections at 15 percent.
4. On a bike, however, imperceptible changes in gradient make themselves painfully felt in your legs.
5. The decline in advantage from level 2 to entry level 3 follows a smooth gradient.